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Spectrum of the Fokker-Planck operator representing diffusion in a random velocity field
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We study spectral properties of the Fokker-Planck operator that represents particles moving via a combina-
tion of diffusion and advection in a time-independent random velocity field, presenting in detail work outlined
elsewhergJ. T. Chalker and Z. J. Wang, Phys. Rev. L&®, 1797 (1997)]. We calculate analytically the
ensemble-averaged one-particle Green function and the eigenvalue density for this Fokker-Planck operator,
using a diagrammatic expansion developed for resolvents of non-Hermitian random operators, together with a
mean-field approximatiorithe self-consistent Born approximatjowhich is well controlled in the weak-
disorder regime for dimensioth>2. The eigenvalue density in the complex plane is nonzero within a wedge
that encloses the negative real axis. Particle motion is diffusive at long times, but for short times we find a
novel time dependence of the mean-square displaceriéit-t?? in dimensiond>2, associated with the
imaginary parts of eigenvalues.

PACS numbses): 05.10.Gg, 47.55.Mh, 05.66k, 02.70.Hm

[. INTRODUCTION of the velocities[4]. Recently, much analytic progress has
been made in a special model considered by Kraichgn
In this paper we study classical diffusion in the presencen which the velocity field is zero-mean Gaussian distributed
of advection by a random, time-independent flow field, withand §-correlated in time, a special case for which the closure
an emphasis on spectral properties of the correspondingroblem is absent. In contrast, our interest in the following is
Fokker-Planck operator. Our motivation is twofold. First, thein flow fields that are time-independent.
mathematical problem of calculating the properties of a ran- The effect of various forms of time-independent spatial
dom, non-Hermitian differential operator is interesting in its disorder on classical diffusion has attracted considerable at-
own right, and, as far as we know, has received little attentention from statistical physicists, especially following the
tion until recently. Second, spectral decomposition is a natuproof by Sinai that a type of random advection in one dimen-
ral approach for investigating the diffusion-advection prob-sion results in dramatically subdiffusive motion at long times
lem. Among other things, the spectrum contains informatiorf6]. Several groups of authofg—10] have investigated scal-
about the time dependence of the effective diffusivity, anding in these systems, particularly within the framework of
our results in fact reveal a short-time regime that appears teenormalization-group theory. Behavior is dependent on di-
have not previously been discussed. mensionality, and long-time motion is diffusive only above
Diffusion-advection problems can arise in a variety ofan upper critical dimension, which is 2 if the advecting ve-
physical settings, including turbulent diffusion of tracer par-locity field has only short-range correlations. While the focus
ticles in geological systems, the temperature field inof that work, reviewed in Ref§11,12, has been long times
Rayleigh-Baard convection, and flow through porous me-and systems at or below the upper critical dimension, we
dia; an extensive review is provided in the article by restrict ourselves in the following to systems above the upper
Isichenko[1]. The interplay between advection and diffusion critical dimension, and consider transient as well as long-
may either greatly enhance or strongly inhibit the long-timetime behavior.
transport of particles, depending on the nature of the flow In addition to the study of diffusion-advection problems
field. Broadly speaking, compressible flows inhibit transport,as critical phenomena, many rigorous results, providing
since fluid sinks at which flow lines converge will act as bounds on the effective diffusivity and on the limiting be-
particle traps, while incompressible flows transport particleshavior at long times, have been proved by mathematicians
more effectively at long times than diffusion alone. In eitherusing the methods of multiscale analysis and variational
case, the effective diffusivity provides a macroscopic meagprinciples[13—-15.
sure of the combined consequences of molecular diffusion Against the background of this varied literature, it is per-
and of advection. haps surprising that little seems to have been known until
Diffusion-advection problems have long been a subject ofecently about spectral properties of the Fokker-Planck op-
research in fluid dynamics. Early work dates back to that okrator for random diffusion-advection problems, even though
Taylor[2] and of Richardsofi3], who proposed the notion of the corresponding aspects of random Sdiger operators
effective diffusivity. Subsequently, Batchelor analyzed one-have been studied very extensively. In fact, the spectrum of
point and two-point correlations in homogeneous turbulencethe Fokker-Planck operator depends very much on the nature
relating the diffusion coefficient to the temporal correlationof the velocity field responsible for advection. In general,
this velocity field can be separated into an incompressible
(divergence-free part and a remainder, which can be ex-
*Permanent address: Department of Theoretical and Applied Mepressed as the gradient of a scalar potential. Pure potential
chanics, Cornell University, Ithaca, NY 14853. flow is a special case of some importance, especially since in
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one dimension any velocity field can be written in terms of a Il. PRINCIPLES OF CALCULATION
scalar potential. In this special case the Fokker-Planck opera-

tor is related by similarity transformation to a Hermitian op- advection have a density, which is a function of timet

eratqr[lG], and therefqre has a purely real spgctrum. Sqm%nd positiony, and evolves according to the Fokker-Planck

previous work has built upon this transformation, Show'ngequation

that anomolous diffusion at long times in one dimension is

connected with a logarithmic singularity of eigenvalue den- atnzgfp(n)EDVZn_v.(Vn), )

sity of the Fokker-Planck operatfit7], while other work has

been concerned in two dimensions with the opposite limit ofwhereD is the molecular diffusivity and is the background

purely incompressible flow, analyzing the connection withvelocity field, which we take to be time-independent and

the quantum random flux problem and studying numericallyrandom. For definiteness, we apply periodic boundary con-

the spatial decay of the Green functigis]. ditions ton(r,t) at the surface of @-dimensional cube of
More generally, as we show, the non-Hermitian nature ovolume (), but we treat in detail only the limi€ —c. The

the Fokker-Planck operator is an obstacle that prevents orfeokker-Planck operatos,, is a sum of two contributions:

from transferring in a straightforward way the techniquesthe diffusion term,Co(n)=DV?n, is Hermitian, while the

developed for random Schiimger operators. For an unre- advection term£;(n)=—V-(Vn), is not, and our attention

stricted flow field, one expects eigenvalues of the Fokkerthroughout this paper is focused on their combined effects on

Planck operator to occupy a finite area of the complex planethe properties of ¢, as arandom, non-Hermitiaroperator.

As a result, the corresponding Green function is nonanalytic Our choice for the probability distribution of the velocity

throughout this area, and established perturbative approachteld is intended to be the simplest: we take it to be Gaussian

to calculating disorder-averaged Green functions, which dewith zero mean, and with correlations ®f(r) that are as

pend on analytic continuation, are inapplicable. This diffi-short-range as possible. It is specified by the variance

culty has been faced previously in the study of certain en-

sembles of non-Hermitian random matrices, for which the , Kg

eigenvalues are known to be distributed uniformly within a (Valk)Vp(k")=T1| a5~ K2

circle in the complex plang¢19,20. For these ensembles,

special techniques have been develop2t,22, which do

not generalize immediately to spatially extended problems +I,

such as the one we are concerned with. Recently, several

groups independentli23—-26 have found that one can make

progress by constructing, from the non-Hermitian operator o

interest, a Hermitian operator with ax2 block structure,

and applying standard methods to this enlarged Hermitian V(k)=(27r)_dJ ddr e KTV (x), 3

operator. We describe this approach below and apply it to the

Fokker-Planck operator, treating the advection term as a pe

turbation to the diffusion term, a limit that is known in fluid the strengths of the incompressible and irrotational parts of

dynamics as the small-Blet-number regime. A . e X
The general method described here might be applied to tape velocity field, respectively. For the diffusion-advection

. . . " problem to be well-defined, it is necessary to impose a short-
variety of problems involving random non-Hermitian Opera‘wavelen th cutoff A, on the spectrum of velocity fluctua-
tors in which behavior at weak disorder is of interest. A 9 ! P y

number of such problems have attracted recent attention, iry_ons, so that Eq.2) is supplanted by,(k)=0 for [k]

cluding asymmetric neural network®1], the statistical me- \701&/ e:‘ S':‘?:gj;%rxsscggawﬁcﬁ f\,g;e d‘gﬁg{ge(tr);t;e(rl?)th -
chanics of flux lines in superconductors with columnar dis- Y . . i
b =(I';/|w|?) (|w|/D)¥**1 is the ratio, raised to the power

order [27], and the Schimdinger equation for particles . : .
moving in a random imaginary scalar potentjas]. Re- +2, of the distances traveled ?){ a particle due to advection
and to diffusion, in time|w|™'. The fact that y(w)

cently, building on the formalism outlined in Sec. ll, useful (@-2)12 igantifies d= 2 h itical di ,
links have been established betwd@9] problems of this ol ' ent! lesd=2< as the upper critical dimension
for the problem: in dimensiod>2, asw—0, y(w)—0 and

kind and certain Hermitian localization problems. . ; . e
The present paper provides a detailed account of worlN€ €xpects the long-time behavior simply to be diffusive,

presented previously in outline elsewhées). In particular, ~ While for d<2, y(w) diverges as»—0, and long-time be-

we describe calculations for a random flow field with arbi- havior is dominated by advection. We restrict our discussion

trary relative strength to the compressible and incompresd? this paper to the regime above the upper critical dimen-
ible components. The remaining sections are organized a&°": _ ,

follows. In Sec. I, we define the problem and outline the ©OUr calculations center on the disorder-averaged one-
Green-function approach used in our calculations. In Sec. Ill

Particles that move by a combination of diffusion and

S(k+k")

KoKs
k2

S(k+k"), 2

yvhere

?) indicates an ensemble average, dhdandI', represent

particle Green function, which in the position space and time

we apply this approach to the Fokker-Planck operator for thdomain is(n(r,t)), wheren(r,t) satisfies Eq(1) with initial
diffusion-advection problem with a random velocity field. condition n(r,0)=4(r). We obtain this from its Laplace
We obtain the Green function for the Fokker-Planck operatofransform,

and its eigenvalue density in the complex plane. We describe 1

numerical tests of our results in Sec. 1V, and present some g(w)=< > (4)
technical details in two Appendixes. w—Lyp
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in which o, in general complex, is the transform variable
conjugate td. It is useful to display the spectral decomposi-
tion of both these Green functions. L@t, | and|R,) be the I GY = —1/q
left and right eigenvectors of;, with eigenvaluex. For
finite system size, the spectrum is discrete, the eigenvalues

are nondegenerate with probability 1, adtl, |}, {|R\)} are »_%
complete, biorthogonal bases. Introducing a plane-wave ba- i
sis,(r|p)=Q"Y%'P", the average spectral density is defined
as

0)

—L

—_— — L‘); - [’I
C(p,w)= < ; (PIRV(L.IP) 8(w— )\)> : 6) FIG. 1. Propagators and vertices.

Then G Gy

G=(MN=|6x G

<n(r,t))=(2w)’df ddpeip‘rfdzwe“’tC(p,w). (6)
(Ml ?+ AATTY (AlPP+ATATTY

The average Green functions are diagonal in the plane-wave (AT P+ AATT Y (=gl P+ ATATY

basis, and we denote the diagonal elementgy@b) by
gP(w): (12)

w)= fdz C(p, )\), (7  Note that the desired Green function is obtained using
g(w)=lim,_,Gy;. SinceH is Hermitian, we can calculate
G, and henceg(w), with established techniques. Specifi-

where the dependence is only pnthe magnitude of, in cally, G can be expanded as a power seriesHip and in

the largeQ) limit, because of spatial isoptropy. Finally, the

_q,-1
eigenvalue density is Go=Ho
. G=Gp—(GoH1Gp) +(GoH1GoH1Go)+ -+, (13)
plw)= E S(w—N\). (8) _ _ .
which leads to a Dyson equation with self-eneljy
Both C(p,\) and p(\) can be calculated from the Green G=Gy+Gy3G. (14)

function using the identity

Working in the plane-wave basi§, andX each consist of
1 J L 9) four diagonal blocks, with elements;;(p) and;(p) for
T Jo* ®—N i,j=1 or 2. It is convenient to represent the power series
diagrammatically. As shown in Fig. 1, we have two propa-
with the notation d/dw* =(1/2)(9/dx+idldy) for w=x gators,G(ﬁ)E 1/n andG(Z%)E —1/%, denoted by a single and
+iy andx,y real. The eigenvalue density will turn out to be double line, respectively, and two vertice$,and A™. It is
nonzero over a finite area of the complexplane, and not natural to separate each vertex into a constant part and a
just on the real axis, as would be the cas€if were Her-  random part: in the case of, w— Ly and— L. w— Ly is
mitian. diagonal, with diagonal elements,=w+Dp?, and aver-
Standard method$30] for calculating average Green ages of the random parts are specified by four cumulants:
functions for random Hermitian operators make extensivg 2, 2.}, (£,£1), (£1£,), and(£1L]) (Fig. 2.
use of the fact that they are analytic in the compieplane, The leading contributions tG at weak disorder are re-
except on the real axis. By contragf{w) is nonanalytic  symmed by the self-consistent Born approximati8&BA).
throughout the(as yet unknowh area of the complex»  This approximation is defined by the expression for the self-
plane in whichp(w) is nonzero. Because of this, a new energy shown diagrammatically in Fig. 3, in which the inter-
approach is required. We first embed the original nonmal propagators represent the full Green funct®n We
Hermitian operator, in the combinatian— £L=A, in a Her-  demonstrate in Appendix A that corrections to the SCBA
mitian operatort which has twice the dimension df, set-  self-energy are small in powers of|w]).
ting There are useful interrelations among the four blocks of
. Gi;, and also among those &f; : sinceG,=G1,and3,;
H=Hot My, (10 ]212, it is sufficient to calcdlate onlyG14(p), Gu(p),

where[31] Goo(P), 211(p), 212p), and,x(p). They are related via
the Dyson equation, which yields
n O
Ho= 0 -y

The inverse ofH exists for realp#0. Its average is Gau(p)=[—21p)IC(p), (16)

S(w—N\)=

0 A
and le(AT 0)- 11 Gu(p)=[7+Z2Ap)1C(p), (15
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(£.L}) (LiL1)
(£iLy) (cicty

FIG. 2. Diagrammatic representation of disorder average.

Gop)=[—n+Z1(p)]C(p) (17)

where

C(P) ={[Z1P)Z+[ 7= Z0a(P) I 7+ 2P} .

(18)

In turn, the SCBA generates expressions3gi(p) in terms
of Gjj(p): referring to Fig. 3, we have

A
21p)=—wyt fo d%q(£1(p, ) L1(d,p))G2(),

(19

A
S 1u(p)= fo dQ(L(p.0)L1(QP))Gan). (20

A
S odp)= fo d9(L1(p.q) L1(0,p))G(Q). (2D

The solution to this set of equations, with the velocity corre-
lations of Eq.(2), simplifies considerably in the special case
I'y=T,, for which the calculations have been described pre-
viously [25]. The solution in the general case is presented in

the following section.

—0— —o—
G

G12

—0— —0—

G G
—»—%‘ ———%_ - =
Sll S12
%v— —_ %:
Tp Ty

SPECTRUM OF THE FOKKER-PLANCK OPERATR. ..

199

Ill. APPLICATION OF SCBA

The expressions for the self-energy within the SCBA,
Egs.(19) and(21), become, with the Gaussian velocity dis-
tribution of Eq.(2),

A
21Ap)= _wp+rlf0 dYq(p- )3 Aa)C(q) + (I~ Ty)

Joo

[g-(g— p)][p (a—p)]

q-p|?

ST(a)C(a),

(22

A
E11([3)):F1p2f0 d¥q[ — 7+ 315(9)]C(q) +(I',—T'y)

2
fdd Lp- (a9~ p)][ 7+ 3149 ]C(q),

(23
A
222(F3):F1f0 dYqa?[ 7+ 3,5(@)]C(q) + (I~ Ty)

. _ 2
foddq[q (q-p)]
0

q—pl? [7+Z20a)]C(a),

(29)

where the fact thaf 5 d%q(p- )2 *,(q)C(q) =0 for symme-

try reasons is an immediate simplification. Equatio®2®)—

(24), with Eq. (18), are coupled integral equations, and pre-
sumably in general not exactly solvable. To make progress,
we treat weak disorder, for which the problem can be re-
duced to a system of algebraic equations. As a starting point,
consider the form of the functio€(q), Eg. (18), which
appears in the integrands of Eq22) and (24). First, in the
absenceof disorder,%15(q) = — wq, 21;=2,,=0, and for
7—0,

1 1

~ (x+Dg?)2+y?

C(q)= (25

|“’q|2

and so, ifo=x+1y lies on the negative real axi€(q) has

a divergence as a function of at q=q,, wherex+ Dq%
=0. In the presence of weak disorder, we anticipate that
C(q) will be large only forx<0, |y| sufficiently small, and
g~(y. We also expect that, i lies in the right half of the
complex plane, or ifly| is large, so thatC(q) is small
throughout the range of integration ovgrthen a good ap-
proximation forX;;(p) should be obtained from evaluating
Egs.(22) and(24) by iteration, using the disorder-free form
for C(q) in the integrands. This approach is analogous to the
first-order Born approximation of scattering theory. Con-
versely, ifx<0 and|y| is small, we expect that it will be
necessary to determir@(q) self-consistently, but with the
simplification at weak disorder that the dominant contribu-
tion to the integrals of Eqg$22) and(24) is from the shell of
wave vectors on which~qg. Forx<0, we therefore evalu-

FIG. 3. Full Green function and self-energy diagrams in theate the integrals by replacinG(q) with |1(w)38(q?—ap),

SCBA.

where | (w) = fod(q’z)C(q) This procedure yields the
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leading behavior at small,,I",, provided the integrals in-
volved are convergent at small and lagevhich is the case
in dimensions 2 d<4. With this approach we find

zlz(p)=—wp+<r2—rl>sd7qg A0 (@)
X<[ﬁ-<ﬁ—ﬁg>][ﬁo-<ﬁ—ﬁo>]>' 6
(N—Ro)? .
%11(do) = = 22(do), and
222(q0>:3d7¢3[n+222<q0>]l(w>
[n-(n—ng)]?

X F1"’(F2_I‘1)< = , (27)

(n_no)2

.

whereS; is the surface area of a unit spheradidimensions,

n and ﬁo are d-dimensional unit vectors in directions corre-
sponding to those af andp in Egs.(22) and(24), and( );
denotes an angular average mnThese averages have the
values

[n-(n—np)][No-(N—ng)]\

< (A—1o)? >a__5’ 2
[n-(ng—mJ%\ 1
<(—)>2 =

Notation is simplified by introducing the new variablE$
=T1S49%/2, A=(TI',—T})/2, andT'=(I';+T5)/2. In these
terms, the solution to Eq$26) and(27) is

2p)=— X+DP2+i#|(w)). (30
7Tl (w)

- . l

222 qo) 1-Ti(w) (31)

Substituting these expressions into Etg), we obtain

C(q)=[(x+Dg?)?+ g%, (32
where
2
2 L)z (L)
p (1—A|(w> At @
and hencdfor x<— )
_ [ 2 |7 42 _m
1= “a@rc~ |~ daica-55. @4
Thus, finally,l () satisfies
yl(w) )2 7l () 2_(3)2
1-Al(w) +<1—ﬁ(w) “lp/-  ©®
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The behavior of the solution to this equation in the limit
—0 depends on the value §f If y is sufficiently large ¥

>yg, Whereyg is determined beloy I'l (w)<1 and the
second term on the left of E¢35) vanishes ag;—0. The
limiting solution is then simply

ar
In that case
g°(w)=lim G, =[Dp?+x+i(y+Aw/D)]" L. (37

7n—0

This expression is manifestly analytic i, implying from
Eq. (9) that p(w), the eigenvalue density of the Fokker-
Planck operator, is zero in this part of theplane. A similar
analysis applies foy<—yg. In contrast, forly|<yg, the
second term on the left of E435) remains nonzero ag
—0 and the limiting solution is

l(w)=T"1. (38)
The boundary between these regimes is evidehtlyyg
with

~wlp wS

Ye=—p~ = 5 Y200[x|=T4|x|% (39
Inside this boundary,
Dp2+x—iyl/T}
9P(w)= (40

(Dp2+x)2+ (w[/D)?’

which, in the same spirit as our representatiolc¢p), may
be written as

ly
g°(0)=— = 8(p*~qp). (41)
1_‘1
From this we obtain, fox<<0 and|y|<yg,
p(w)= (42)

(2m) T x|

Finally, we turn to the time evolution of the particle den-
sity. FromgP(w) we calculate

C(p,w)= S(p>—a3) (43)

27l

for o within the support of the eigenvalue density, and
C(p,w)=0 otherwise. Using Eq6), we find

f ddp eip-rerZt(

wherewo=Yyg, evaluated ak=—Dp?: wo=7Syl"1p%/2D.
The integrand has two factors: the first oae‘,Dpzt, would
arise simply from diffusion; the second, sigf)/wgt, is a
consequence of advection. Mathematically, the first of these

1
(2m)¢

S|r((.00t)
wot

(n(r,0)= ) 44
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appears because the contribution(igr,t)) associated with 05F . i - © Numerics
eigenvalues)\, of the Fokker-Planck operator having real 04F o . Lattice theory
parts that are large and negative is suppressed at long times, 0.3k e Continuum theory
by the factore*. Conversely, the second of these is present g
because contributions from eigenvalues with different imagi-
nary parts will appear with cancelling phase factce¥!.

Now consider the integral in Eq44). At weak disorder, > 0;
when the SCBA is a controlled approximation, the advective 0.1
factor differs significantly from 1 only where the diffusive 0.2k

factor is small, so thar?)~Dt, indicating the normal dif-
fusive behavior. At strong disorder the SCBA is simply a

mean-field approximation, and not controlled. If we never- F
theless accept the SCBA results for strong disorder, we find 05—
a new, short-time regime of particle motion. In this regime X

the phase o€ is important, it is the advective factor that

sets the width of the density profile at short times, &

~(T'1t/D)?M. A tentative rationalization of this result runs

as follows. First, recall that diffusion acts to slow advective

motion, since, by diffusing, a tracer particle samples a local

average of the advecting velocity field. To estimate how fast +[D+ %Vi,jf(llz)]ni,jfl"'[_‘l‘D - %(ui+(1/2),j

transport is under the combined process, note that the flow

velocity averaged over a voluné has a mean-square value

I'/19. Equating the distance traveled in tirat this velocity

to the distance traveled diffusively in the same time, we obWVe restrict ourselves to the cabg=1",=I", for which the

tain 't?/19~Dt, which can be rewritten in the formh®>  Vvelocities (,v) are Gaussian random variables with zero

~(T't/D)?8, the result obtained from the SCBA. mean and variance ¢2)°I". A cutoff |u|<2D is imposed to
ensure that matrix elements of the discretized operator are
non-negative, a requirement for the transition matrix in any

IV. COMPARISON WITH NUMERICAL SIMULATIONS Markov process, which in turn implies that the real parts of

As a test of our analytical approach, we compare result € eigenvalues. are r)ecess_,aril_y nonp.ositive. Th? eigenvalues
for the boundary of the support of the eigenvalue densit ound by numerical diagnalization, using 50 realizations of a

H H _ 2\ _ 2\ _
with numerical calculations of the eigenvalue distribution.?izxz32 ;att'fz‘? with Dh_l and(u%)=(v >—I‘I3-25 EO ghatrd
The numerical calculations involve diagonalizing a dis- —0-25(2m) °, are shown in Fig. 4, as well as the boundary

cretized version of the Fokker-Planck operator, as set out if the eigenvalue density calculated for the discretized prob-
this section. In order that the test of analytical results is a: emon a latttice of the_ same S'ﬁ“”. "”?) and _for the con-
direct as possible, we adapt the analytical theory for the gistinuum theo.ry(dotted ling. The full I|_ne is obtained, follow-
cretized operator in the way summarized in Appendix B. we 9 Appe.ndlx'B, as thes values which sol\{e EgB9). The

can make the comparison for a two-dimensional system def@shed line is calculated from E¢B10): it has a slope
spite the fact that the theory developed in Sec. Ill has IongrﬂS?[z.: [ . . . .

wavelength divergences in dimensiotis 2, since the sys- The finite lattice spacing manifests itself in a lower bound

tem sizes we study are small enough to cut off thelo the real part of the eigenvalues, and the finite system size
divergences studied results in oscillations in the position of the boundary

We discretize the Fokker-Planck operator keeping inthat are apparent in both the numerical and analytical results.

mind the conservative form of the Fokker-Planck equation A further finite-size effect, clear in the data but not captured

in the SCBA that we have presented, is that a finite fraction
of eigenvalues is purely real: phenomena of this kind in ran-

FIG. 4. Distribution of eigenvalues in the complex pladets
and calculated boundary p{ ) for the lattice theoryfull line) and
continuum theorydotted ling.

—Ui—(12) T Vij+ (w2~ Vij— ) Ini ;- (48)

on dom matrix problems have been analyszd in REZg] and
—=V-], (45)
ot [24].

J=DVn-Vn. (46) V. SUMMARY

. i ) , o We have described in detail a general technique for cal-
On a two-dimensional, square lattice with coordinates  cyjating average spectral properties of non-Hermitian ran-
velocity componentsi; ; andv; ; are defined on horizontal gom operators. We have applied this technique to the
and vertical links, respectively, and densitigg at nodes. Fokker-Planck operator that represents particle diffusion in
Using the center difference, the discrete eigenvalue equatiope presence of random advection. In this way we obtain the
becomes eigenvalue distribution of this operator in the complex plane.
The approach is formally exact in the weak disorder limit,
AN =[D~ %Ui+(1/2),j]ni+1,j+[D+ %Ui—(l/z),j]ni—l,j and numerical tests shqw that it i; remarkably a(_:curate even
for moderately strong disorder. Finally, we have inferred the
+[D=3Vi j+ @)INij+1 (47)  time-dependent effective diffusivity from the ensemble-
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APPENDIX B: STUDY OF THE DISCRETIZED PROBLEM
\ On a lattice, with site labelg, B in arbitrary dimension,

the advection part of the Fokker-Planck operateN -V, is

s represented by a matrix with elements
FIG. 5. Leading correction to the SCBA self-energy. A== 3Uup (BY)
averaged Green’s function, obtaining a novel scaling in itdor «, nearest-neighbor sites. It satisfidg;=—Az, and
transient behavior in the strong disorder limit. has diagonal elements
1
ACKNOWLEDGMENTS Awa=—3 > uup (B2)
3

We thank I. V. Lerner and A. Stepanenko for correcting a

mistake in an earlier draft. This work was supported in parisg thats A(a,8)=0, as required for conservation of par-
by EPSRC Grant No. GR/J8327. ticle density. Other elements are zero. We tadkg; to be
Gaussian distributed with zero mean, and variance
APPENDIX A: CORRECTIONS TO SCBA

APy =Tm2, (A Az =—Tu? B3
We demonstrate in this appendix that corrections to the (AapPag) =TT (AapApa) 4 B3)

SCBA expression for the self-energy are small in the cou- (ApPus) =T 72, (AP =—Tm? (B4)
pling constant,y(|w|), considering for simplicity the case aallap ’ ae’ fa ’
I''=I,=I". We compare the SCBA self-energ¥,1(p),
with the contribution arising from the diagram illustrated in
Fig. 5, which we denote by.{¥(p). Our goal is to compute
the ratio>{3)(p)/=11(p) in the weak disorder limit. We be-
gin by calculating the correction

(A2 )y=4T 7%, (A, Agg)=—Tm? (B5)

for a,B nearest-neighbor sites. With the plane-wave basis
(r Jky=N"Y2%k e wherer, is the position coordinate of
site « on a lattice with N sites in total, we need
{{q|A|k){k|AT|q)), which takes the value

A (A
25’?(p)=r2f0 fo d9g,d%,(p- d,)?

1
AKWKIATIgY=— > (A, A,
X G2x(01)G11(d2) G p+02—0y). (Al ((alAlkock|ATian N2 r1r2r3r4< P

First, consider the region of the complexplane in which x !4 (=g tik(ra=ra) (B6)
the Fokker-Planck eigenvalue density, calculated within the

SCBA, is zero(all y for x>0 and|y|>yg for x<0). In that 47T

region, for smally, G;i(p)=7, S1(p)x7n, 22 (p)x7r°, =—N L[(1—cosa,)(1+cosky)

and the ratio has the limiting valug{?(p)/=14(p)=0 for
n—0. Second, consider the complementary regi®r<Q
and|y|<yg). In this region, we use the same approach for

+(1—cosqy)(1+cosk,)]. (B7)

evaluating Eq(A1) as was applied to Eq¢26) and(27) in ~ Similarly,
Sec. lll. Substituting foiG;;(p) in terms ofC(p), replacing (2m)2T
C(p) with 1(w)8(p?>—q3), whereDg3+x=0, and using ((qAlK)(k|A|q)) = — [sin(k,)sin(g,)
Egs.(21) and(35) to obtainX;(p) andl(w), we find, for N
p=qp in the limit »—0, +sin(ky)sin(qy)]. (B8)
2_\,2\312
@ (p)= Mf (A2) Repeating the style of calculation described in Sec.Ill, we
" rgs find that the support of the eigenvalue density of the dis-

cretized Fokker-Planck operator has a boundary determined
wheref is an angular average over directionsogfq,, rep- by

resented by the unit vectors andn.,: (2mer (1+ 6050 (2— Costl, €054,
X X y

f=((N;-np)?8([n+n,—Nn11°~1)); 5, =0(1). (A3) N gca, |o+2D[2—cosg,—cosqy]|?
(B9)
Thus, for|y|<yg, corrections to the SCBA have the relative
size In the continuum limit we recover the result
3@(p)  ya-y? A q?
== f~y(X), A4 rf d’g————=1, B10
Sapl 1 Y (A9 0 " NwrDg?? (510

and, as advertised, are small at weak disorder. and hence Eq39).
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