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Spectrum of the Fokker-Planck operator representing diffusion in a random velocity field

J. T. Chalker1 and Z. Jane Wang1,2,*
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We study spectral properties of the Fokker-Planck operator that represents particles moving via a combina-
tion of diffusion and advection in a time-independent random velocity field, presenting in detail work outlined
elsewhere@J. T. Chalker and Z. J. Wang, Phys. Rev. Lett.79, 1797 ~1997!#. We calculate analytically the
ensemble-averaged one-particle Green function and the eigenvalue density for this Fokker-Planck operator,
using a diagrammatic expansion developed for resolvents of non-Hermitian random operators, together with a
mean-field approximation~the self-consistent Born approximation! which is well controlled in the weak-
disorder regime for dimensiond.2. The eigenvalue density in the complex plane is nonzero within a wedge
that encloses the negative real axis. Particle motion is diffusive at long times, but for short times we find a
novel time dependence of the mean-square displacement,^r 2&;t2/d in dimensiond.2, associated with the
imaginary parts of eigenvalues.

PACS number~s!: 05.10.Gg, 47.55.Mh, 05.60.2k, 02.70.Hm
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I. INTRODUCTION

In this paper we study classical diffusion in the presen
of advection by a random, time-independent flow field, w
an emphasis on spectral properties of the correspon
Fokker-Planck operator. Our motivation is twofold. First, t
mathematical problem of calculating the properties of a r
dom, non-Hermitian differential operator is interesting in
own right, and, as far as we know, has received little att
tion until recently. Second, spectral decomposition is a na
ral approach for investigating the diffusion-advection pro
lem. Among other things, the spectrum contains informat
about the time dependence of the effective diffusivity, a
our results in fact reveal a short-time regime that appear
have not previously been discussed.

Diffusion-advection problems can arise in a variety
physical settings, including turbulent diffusion of tracer pa
ticles in geological systems, the temperature field
Rayleigh-Bénard convection, and flow through porous m
dia; an extensive review is provided in the article
Isichenko@1#. The interplay between advection and diffusio
may either greatly enhance or strongly inhibit the long-tim
transport of particles, depending on the nature of the fl
field. Broadly speaking, compressible flows inhibit transpo
since fluid sinks at which flow lines converge will act
particle traps, while incompressible flows transport partic
more effectively at long times than diffusion alone. In eith
case, the effective diffusivity provides a macroscopic m
sure of the combined consequences of molecular diffus
and of advection.

Diffusion-advection problems have long been a subjec
research in fluid dynamics. Early work dates back to tha
Taylor @2# and of Richardson@3#, who proposed the notion o
effective diffusivity. Subsequently, Batchelor analyzed on
point and two-point correlations in homogeneous turbulen
relating the diffusion coefficient to the temporal correlati

*Permanent address: Department of Theoretical and Applied
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of the velocities@4#. Recently, much analytic progress h
been made in a special model considered by Kraichnan@5#,
in which the velocity field is zero-mean Gaussian distribu
andd-correlated in time, a special case for which the clos
problem is absent. In contrast, our interest in the following
in flow fields that are time-independent.

The effect of various forms of time-independent spat
disorder on classical diffusion has attracted considerable
tention from statistical physicists, especially following th
proof by Sinai that a type of random advection in one dime
sion results in dramatically subdiffusive motion at long tim
@6#. Several groups of authors@7–10# have investigated scal
ing in these systems, particularly within the framework
renormalization-group theory. Behavior is dependent on
mensionality, and long-time motion is diffusive only abov
an upper critical dimension, which is 2 if the advecting v
locity field has only short-range correlations. While the foc
of that work, reviewed in Refs.@11,12#, has been long times
and systems at or below the upper critical dimension,
restrict ourselves in the following to systems above the up
critical dimension, and consider transient as well as lo
time behavior.

In addition to the study of diffusion-advection problem
as critical phenomena, many rigorous results, provid
bounds on the effective diffusivity and on the limiting b
havior at long times, have been proved by mathematici
using the methods of multiscale analysis and variatio
principles@13–15#.

Against the background of this varied literature, it is pe
haps surprising that little seems to have been known u
recently about spectral properties of the Fokker-Planck
erator for random diffusion-advection problems, even thou
the corresponding aspects of random Schro¨dinger operators
have been studied very extensively. In fact, the spectrum
the Fokker-Planck operator depends very much on the na
of the velocity field responsible for advection. In gener
this velocity field can be separated into an incompress
~divergence-free! part and a remainder, which can be e
pressed as the gradient of a scalar potential. Pure pote
flow is a special case of some importance, especially sinc
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PRE 61 197SPECTRUM OF THE FOKKER-PLANCK OPERATOR . . .
one dimension any velocity field can be written in terms o
scalar potential. In this special case the Fokker-Planck op
tor is related by similarity transformation to a Hermitian o
erator@16#, and therefore has a purely real spectrum. So
previous work has built upon this transformation, showi
that anomolous diffusion at long times in one dimension
connected with a logarithmic singularity of eigenvalue de
sity of the Fokker-Planck operator@17#, while other work has
been concerned in two dimensions with the opposite limi
purely incompressible flow, analyzing the connection w
the quantum random flux problem and studying numerica
the spatial decay of the Green function@18#.

More generally, as we show, the non-Hermitian nature
the Fokker-Planck operator is an obstacle that prevents
from transferring in a straightforward way the techniqu
developed for random Schro¨dinger operators. For an unre
stricted flow field, one expects eigenvalues of the Fokk
Planck operator to occupy a finite area of the complex pla
As a result, the corresponding Green function is nonanal
throughout this area, and established perturbative approa
to calculating disorder-averaged Green functions, which
pend on analytic continuation, are inapplicable. This di
culty has been faced previously in the study of certain
sembles of non-Hermitian random matrices, for which
eigenvalues are known to be distributed uniformly within
circle in the complex plane@19,20#. For these ensembles
special techniques have been developed@21,22#, which do
not generalize immediately to spatially extended proble
such as the one we are concerned with. Recently, sev
groups independently@23–26# have found that one can mak
progress by constructing, from the non-Hermitian operato
interest, a Hermitian operator with a 232 block structure,
and applying standard methods to this enlarged Hermi
operator. We describe this approach below and apply it to
Fokker-Planck operator, treating the advection term as a
turbation to the diffusion term, a limit that is known in flui
dynamics as the small-Pe´clet-number regime.

The general method described here might be applied
variety of problems involving random non-Hermitian oper
tors in which behavior at weak disorder is of interest.
number of such problems have attracted recent attention
cluding asymmetric neural networks@21#, the statistical me-
chanics of flux lines in superconductors with columnar d
order @27#, and the Schro¨dinger equation for particles
moving in a random imaginary scalar potential@28#. Re-
cently, building on the formalism outlined in Sec. II, usef
links have been established between@29# problems of this
kind and certain Hermitian localization problems.

The present paper provides a detailed account of w
presented previously in outline elsewhere@25#. In particular,
we describe calculations for a random flow field with ar
trary relative strength to the compressible and incompre
ible components. The remaining sections are organized
follows. In Sec. II, we define the problem and outline t
Green-function approach used in our calculations. In Sec.
we apply this approach to the Fokker-Planck operator for
diffusion-advection problem with a random velocity fiel
We obtain the Green function for the Fokker-Planck opera
and its eigenvalue density in the complex plane. We desc
numerical tests of our results in Sec. IV, and present so
technical details in two Appendixes.
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II. PRINCIPLES OF CALCULATION

Particles that move by a combination of diffusion a
advection have a density,n, which is a function of time,t,
and position,r , and evolves according to the Fokker-Plan
equation

] tn5Lf p~n![D¹2n2“•~Vn!, ~1!

whereD is the molecular diffusivity andV is the background
velocity field, which we take to be time-independent a
random. For definiteness, we apply periodic boundary c
ditions to n(r ,t) at the surface of ad-dimensional cube of
volumeV, but we treat in detail only the limitV→`. The
Fokker-Planck operator,Lf p , is a sum of two contributions
the diffusion term,L0(n)5D¹2n, is Hermitian, while the
advection term,L1(n)52“•(Vn), is not, and our attention
throughout this paper is focused on their combined effects
the properties ofLf p as arandom, non-Hermitianoperator.

Our choice for the probability distribution of the velocit
field is intended to be the simplest: we take it to be Gauss
with zero mean, and with correlations ofV(r ) that are as
short-range as possible. It is specified by the variance

^Va~k!Vb~k8!&5G1S dab2
kakb

k2 D d~k1k8!

1G2S kakb

k2 D d~k1k8!, ~2!

where

V~k!5~2p!2dE ddr e2 ik•rV~x!, ~3!

^ & indicates an ensemble average, andG1 andG2 represent
the strengths of the incompressible and irrotational parts
the velocity field, respectively. For the diffusion-advectio
problem to be well-defined, it is necessary to impose a sh
wavelength cutoff,L, on the spectrum of velocity fluctua
tions, so that Eq.~2! is supplanted byVa(k)50 for uku
.L. A dimensionless measure of the disorder strength
volves a frequency scale, which we denote byv: g i(v)
5(G i /uvu2)(uvu/D)d/211 is the ratio, raised to the powerd
12, of the distances traveled by a particle due to advec
and to diffusion, in time uvu21. The fact that g(v)
}uvu(d22)/2 identifiesd52 as the upper critical dimensio
for the problem: in dimensiond.2, asv→0, g(v)→0 and
one expects the long-time behavior simply to be diffusiv
while for d,2, g(v) diverges asv→0, and long-time be-
havior is dominated by advection. We restrict our discuss
in this paper to the regime above the upper critical dim
sion.

Our calculations center on the disorder-averaged o
particle Green function, which in the position space and ti
domain is^n(r ,t)&, wheren(r ,t) satisfies Eq.~1! with initial
condition n(r ,0)5d(r ). We obtain this from its Laplace
transform,

g~v!5 K 1

v2Lf p
L , ~4!
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198 PRE 61J. T. CHALKER AND Z. JANE WANG
in which v, in general complex, is the transform variab
conjugate tot. It is useful to display the spectral decompo
tion of both these Green functions. Let^Llu anduRl& be the
left and right eigenvectors ofLf p with eigenvaluel. For
finite system size, the spectrum is discrete, the eigenva
are nondegenerate with probability 1, and$^Llu%, $uRl&% are
complete, biorthogonal bases. Introducing a plane-wave
sis,^r up&5V21/2eip•r, the average spectral density is defin
as

C~p,v!5K (
l

^puRl&^Llup&d~v2l!L . ~5!

Then

^n~r ,t !&5~2p!2dE ddp eip•rE d2v evtC~p,v!. ~6!

The average Green functions are diagonal in the plane-w
basis, and we denote the diagonal elements ofg(v) by
gp(v):

gp~v!5E d2l
C~p,l!

v2l
, ~7!

where the dependence is only onp, the magnitude ofp, in
the largeV limit, because of spatial isoptropy. Finally, th
eigenvalue density is

r~v!5V21(
l

d~v2l! . ~8!

Both C(p,l) and r(l) can be calculated from the Gree
function using the identity

d~v2l!5
1

p

]

]v*

1

v2l
~9!

with the notation ]/]v* 5(1/2)(]/]x1 i ]/]y) for v5x
1 iy andx,y real. The eigenvalue density will turn out to b
nonzero over a finite area of the complexv plane, and not
just on the real axis, as would be the case ifLf p were Her-
mitian.

Standard methods@30# for calculating average Gree
functions for random Hermitian operators make extens
use of the fact that they are analytic in the complexv plane,
except on the real axis. By contrast,g(v) is nonanalytic
throughout the~as yet unknown! area of the complexv
plane in whichr(v) is nonzero. Because of this, a ne
approach is required. We first embed the original no
Hermitian operator, in the combinationv2L[A, in a Her-
mitian operatorH which has twice the dimension ofL, set-
ting

H5H01H1 , ~10!

where@31#

H05S h 0

0 2h D and H15S 0 A
A † 0 D . ~11!

The inverse ofH exists for realh5” 0. Its average is
es

a-

ve

e

-

G5^H 21&[S G11 G12

G21 G22D
5S ^h@h21AA †#21& ^A@h21A †A#21&

^A †@h21AA †#21& ^2h@h21A †A#21&D .

~12!

Note that the desired Green function is obtained us
g(v)5 limh→0 G21. SinceH is Hermitian, we can calculate
G, and henceg(v), with established techniques. Speci
cally, G can be expanded as a power series inH1 and in
G0[H 0

21,

G5G02^G0H1G0&1^G0H1G0H1G0&1•••, ~13!

which leads to a Dyson equation with self-energyS,

G5G01G0SG. ~14!

Working in the plane-wave basis,G andS each consist of
four diagonal blocks, with elementsGi j (p) and S i j (p) for
i , j 51 or 2. It is convenient to represent the power ser
diagrammatically. As shown in Fig. 1, we have two prop
gators,G11

(0)[1/h andG22
(0)[21/h, denoted by a single and

double line, respectively, and two vertices,A andA †. It is
natural to separate each vertex into a constant part an
random part: in the case ofA, v2L0 and 2L1 . v2L0 is
diagonal, with diagonal elementsvp[v1Dp2, and aver-
ages of the random parts are specified by four cumula
^L1L1&, ^L1L 1

†&, ^L 1
†L1&, and^L 1

†L 1
†& ~Fig. 2!.

The leading contributions toG at weak disorder are re
summed by the self-consistent Born approximation~SCBA!.
This approximation is defined by the expression for the s
energy shown diagrammatically in Fig. 3, in which the inte
nal propagators represent the full Green functionG. We
demonstrate in Appendix A that corrections to the SCB
self-energy are small in powers ofg(uvu).

There are useful interrelations among the four blocks
Gi j , and also among those ofS i j : sinceG215G12

† andS21

5S12
† , it is sufficient to calculate onlyG11(p), G21(p),

G22(p), S11(p), S12(p), andS22(p). They are related via
the Dyson equation, which yields

G11~p!5@h1S22~p!#C~p!, ~15!

G21~p!5@2S12* ~p!#C~p!, ~16!

FIG. 1. Propagators and vertices.
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G22~p!5@2h1S11~p!#C~p!, ~17!

where

C~p!5$uS12~p!u21@h2S11~p!#@h1S22~p!#%21.
~18!

In turn, the SCBA generates expressions forS i j (p) in terms
of Gi j (p): referring to Fig. 3, we have

S12~p!52vp1E
0

L

ddq^L1~p,q!L1~q,p!&G21~q!,

~19!

S11~p!5E
0

L

ddq^L1~p,q!L 1
†~q,p!&G22~q!. ~20!

S22~p!5E
0

L

ddq^L 1
†~p,q!L1~q,p!&G11~q!. ~21!

The solution to this set of equations, with the velocity cor
lations of Eq.~2!, simplifies considerably in the special ca
G15G2, for which the calculations have been described p
viously @25#. The solution in the general case is presented
the following section.

FIG. 2. Diagrammatic representation of disorder average.

FIG. 3. Full Green function and self-energy diagrams in
SCBA.
-

-
n

III. APPLICATION OF SCBA

The expressions for the self-energy within the SCB
Eqs.~19! and ~21!, become, with the Gaussian velocity di
tribution of Eq.~2!,

S12~p!52vp1G1E
0

L

ddq~p•q!S12* ~q!C~q!1~G22G1!

3E
0

L

ddq
@q•~q2p!#@p•~q2p!#

uq2pu2
S12* ~q!C~q!,

~22!

S11~p!5G1p2E
0

L

ddq@2h1S11~q!#C~q!1~G22G1!

3E
0

L

ddq
@p•~q2p!#2

uq2pu2
@2h1S11~q!#C~q!,

~23!

S22~p!5G1E
0

L

ddqq2@h1S22~q!#C~q!1~G22G1!

3E
0

L

ddq
@q•~q2p!#2

uq2pu2
@h1S22~q!#C~q!,

~24!

where the fact that*0
Lddq(p•q)S12* (q)C(q)50 for symme-

try reasons is an immediate simplification. Equations~22!–
~24!, with Eq. ~18!, are coupled integral equations, and pr
sumably in general not exactly solvable. To make progre
we treat weak disorder, for which the problem can be
duced to a system of algebraic equations. As a starting po
consider the form of the functionC(q), Eq. ~18!, which
appears in the integrands of Eqs.~22! and ~24!. First, in the
absenceof disorder,S12(q)52vq , S115S2250, and for
h→0,

C~q!5
1

uvqu2
[

1

~x1Dq2!21y2
, ~25!

and so, ifv[x1 iy lies on the negative real axis,C(q) has
a divergence as a function ofq, at q5q0, wherex1Dq0

2

50. In the presence of weak disorder, we anticipate t
C(q) will be large only forx,0, uyu sufficiently small, and
q'q0. We also expect that, ifv lies in the right half of the
complex plane, or ifuyu is large, so thatC(q) is small
throughout the range of integration overq, then a good ap-
proximation forS i j (p) should be obtained from evaluatin
Eqs.~22! and ~24! by iteration, using the disorder-free form
for C(q) in the integrands. This approach is analogous to
first-order Born approximation of scattering theory. Co
versely, if x,0 and uyu is small, we expect that it will be
necessary to determineC(q) self-consistently, but with the
simplification at weak disorder that the dominant contrib
tion to the integrals of Eqs.~22! and~24! is from the shell of
wave vectors on whichq'q0. Forx,0, we therefore evalu-
ate the integrals by replacingC(q) with I (v)d(q22q0

2),
where I (v)5*0

Ld(q82)C(q8). This procedure yields the
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leading behavior at smallG1 ,G2, provided the integrals in-
volved are convergent at small and largeq, which is the case
in dimensions 2,d,4. With this approach we find

S12~p!52vp1~G22G1!
Sdq0

d

2
S12* ~q0!I ~v!

3K @ n̂•~ n̂2n̂0!#@ n̂0•~ n̂2n̂0!#

~ n̂2n̂0!2 L
n̂

, ~26!

S11(q0)52S22(q0), and

S22~q0!5
Sdq0

d

2
@h1S22~q0!#I ~v!

3FG11~G22G1!K @ n̂•~ n̂2n̂0!#2

~ n̂2n̂0!2 L
n̂
G , ~27!

whereSd is the surface area of a unit sphere ind dimensions,
n̂ and n̂0 ared-dimensional unit vectors in directions corr
sponding to those ofq andp in Eqs.~22! and ~24!, and^ & n̂

denotes an angular average onn̂. These averages have th
values

K @ n̂•~ n̂2n̂0!#@ n̂0•~ n̂2n̂0!#

~ n̂2n̂0!2 L
n̂

52
1

2
, ~28!

K @ n̂•~ n̂02n̂!#2

~ n̂2n̂0!2 L
n̂

5
1

2
. ~29!

Notation is simplified by introducing the new variablesG i8

5G iSdq0
d/2, D5(G282G18)/2, andḠ5(G181G28)/2. In these

terms, the solution to Eqs.~26! and ~27! is

S12~p!52S x1Dp21 i
y

12DI ~v! D , ~30!

S22~q0!5
hḠI ~v!

12ḠI ~v!
. ~31!

Substituting these expressions into Eq.~18!, we obtain

C~q!5@~x1Dq2!21b2#21, ~32!

where

b25S y

12DI ~v! D
2

1S h

12ḠI ~v!
D 2

, ~33!

and hence~for x!2b)

I ~v![E
0

L2

d~q2!C~q!'E
2`

`

d~q2!C~q!5
p

bD
. ~34!

Thus, finally,I (v) satisfies

S yI~v!

12DI ~v! D
2

1S hI ~v!

12ḠI ~v!
D 2

5S p

D D 2

. ~35!
The behavior of the solution to this equation in the limith
→0 depends on the value ofy. If y is sufficiently large (y
.yB , where yB is determined below!, ḠI (v),1 and the
second term on the left of Eq.~35! vanishes ash→0. The
limiting solution is then simply

I ~v!5
p

Dy1pD
. ~36!

In that case

gp~v!5 lim
h→0

G215@Dp21x1 i ~y1Dp/D !#21. ~37!

This expression is manifestly analytic inv, implying from
Eq. ~9! that r(v), the eigenvalue density of the Fokke
Planck operator, is zero in this part of thev plane. A similar
analysis applies fory,2yB . In contrast, foruyu,yB , the
second term on the left of Eq.~35! remains nonzero ash
→0 and the limiting solution is

I ~v!5Ḡ21. ~38!

The boundary between these regimes is evidentlyuyu5yB
with

yB5
pG18

D
5

pSd

2
g1~x!uxu}G1uxud/2. ~39!

Inside this boundary,

gp~v!5
Dp21x2 iy Ḡ/G18

~Dp21x!21~pḠ/D !2
, ~40!

which, in the same spirit as our representation ofC(p), may
be written as

gp~v!52
iy

G18
d~p22q0

2!. ~41!

From this we obtain, forx,0 anduyu,yB ,

r~v!5
D

~2p!d11G1uxu
. ~42!

Finally, we turn to the time evolution of the particle de
sity. Fromgp(v) we calculate

C~p,v!5
1

2pG18
d~p22q0

2! ~43!

for v within the support of the eigenvalue density, a
C(p,v)50 otherwise. Using Eq.~6!, we find

^n~r ,t !&5
1

~2p!dE ddp eip•re2Dp2tS sin~v0t !

v0t D , ~44!

wherev05yB , evaluated atx52Dp2: v05pSdG1pd/2D.
The integrand has two factors: the first one,e2Dp2t, would
arise simply from diffusion; the second, sin(v0t)/v0t, is a
consequence of advection. Mathematically, the first of th
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appears because the contribution to^n(r ,t)& associated with
eigenvalues,l, of the Fokker-Planck operator having re
parts that are large and negative is suppressed at long ti
by the factorelt. Conversely, the second of these is pres
because contributions from eigenvalues with different ima
nary parts will appear with cancelling phase factors,elt.
Now consider the integral in Eq.~44!. At weak disorder,
when the SCBA is a controlled approximation, the advect
factor differs significantly from 1 only where the diffusiv
factor is small, so that̂r 2&;Dt, indicating the normal dif-
fusive behavior. At strong disorder the SCBA is simply
mean-field approximation, and not controlled. If we nev
theless accept the SCBA results for strong disorder, we
a new, short-time regime of particle motion. In this regim
the phase ofelt is important, it is the advective factor tha
sets the width of the density profile at short times, and^r 2&
;(G1t/D)2/d. A tentative rationalization of this result run
as follows. First, recall that diffusion acts to slow advecti
motion, since, by diffusing, a tracer particle samples a lo
average of the advecting velocity field. To estimate how f
transport is under the combined process, note that the
velocity averaged over a volumel d has a mean-square valu
G/ l d. Equating the distance traveled in timet at this velocity
to the distance traveled diffusively in the same time, we
tain Gt2/ l d;Dt, which can be rewritten in the forml 2

;(Gt/D)2/d, the result obtained from the SCBA.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

As a test of our analytical approach, we compare res
for the boundary of the support of the eigenvalue den
with numerical calculations of the eigenvalue distributio
The numerical calculations involve diagonalizing a d
cretized version of the Fokker-Planck operator, as set ou
this section. In order that the test of analytical results is
direct as possible, we adapt the analytical theory for the
cretized operator in the way summarized in Appendix B. W
can make the comparison for a two-dimensional system
spite the fact that the theory developed in Sec. III has lo
wavelength divergences in dimensionsd<2, since the sys-
tem sizes we study are small enough to cut off
divergences.

We discretize the Fokker-Planck operator keeping
mind the conservative form of the Fokker-Planck equatio

]n

]t
5“•J, ~45!

J5D“n2Vn. ~46!

On a two-dimensional, square lattice with coordinatesi , j ,
velocity componentsui , j and v i , j are defined on horizonta
and vertical links, respectively, and densitiesni , j at nodes.
Using the center difference, the discrete eigenvalue equa
becomes

lni j 5@D2 1
2 ui 1(1/2),j #ni 11,j1@D1 1

2 ui 2(1/2),j #ni 21,j

1@D2 1
2 v i , j 1(1/2)#ni , j 11 ~47!
es,
t

i-

e

-
d

l
t
w

-

ts
y
.
-
in
s
s-
e
e-
-

e

n
,

on

1@D1 1
2 v i , j 2(1/2)#ni , j 211@24D2 1

2 ~ui 1(1/2),j

2ui 2(1/2),j1v i , j 1(1/2)2v i , j 2(1/2)!#ni , j . ~48!

We restrict ourselves to the caseG15G2[G, for which the
velocities (u,v) are Gaussian random variables with ze
mean and variance (2p)2G. A cutoff uuu<2D is imposed to
ensure that matrix elements of the discretized operator
non-negative, a requirement for the transition matrix in a
Markov process, which in turn implies that the real parts
the eigenvalues are necessarily nonpositive. The eigenva
found by numerical diagnalization, using 50 realizations o
32332 lattice with D51 and ^u2&5^v2&50.25 so thatG
50.25(2p)22, are shown in Fig. 4, as well as the bounda
to the eigenvalue density calculated for the discretized pr
lem on a lattice of the same size~full line! and for the con-
tinuum theory~dotted line!. The full line is obtained, follow-
ing Appendix B, as thev values which solve Eq.~B9!. The
dashed line is calculated from Eq.~B10!: it has a slope
GpS2/25 1

16 .
The finite lattice spacing manifests itself in a lower bou

to the real part of the eigenvalues, and the finite system
studied results in oscillations in the position of the bound
that are apparent in both the numerical and analytical res
A further finite-size effect, clear in the data but not captur
in the SCBA that we have presented, is that a finite fract
of eigenvalues is purely real: phenomena of this kind in r
dom matrix problems have been analyszd in Refs.@22# and
@24#.

V. SUMMARY

We have described in detail a general technique for c
culating average spectral properties of non-Hermitian r
dom operators. We have applied this technique to
Fokker-Planck operator that represents particle diffusion
the presence of random advection. In this way we obtain
eigenvalue distribution of this operator in the complex pla
The approach is formally exact in the weak disorder lim
and numerical tests show that it is remarkably accurate e
for moderately strong disorder. Finally, we have inferred
time-dependent effective diffusivity from the ensemb

FIG. 4. Distribution of eigenvalues in the complex plane~dots!
and calculated boundary tor(v) for the lattice theory~full line! and
continuum theory~dotted line!.
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averaged Green’s function, obtaining a novel scaling in
transient behavior in the strong disorder limit.
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APPENDIX A: CORRECTIONS TO SCBA

We demonstrate in this appendix that corrections to
SCBA expression for the self-energy are small in the c
pling constant,g(uvu), considering for simplicity the cas
G15G2[G. We compare the SCBA self-energy,S11(p),
with the contribution arising from the diagram illustrated
Fig. 5, which we denote byS11

(2)(p). Our goal is to compute
the ratioS11

(2)(p)/S11(p) in the weak disorder limit. We be
gin by calculating the correction

S11
(2)~p!5G2E

0

LE
0

L

ddq1ddq2~p•q2!2

3G22~q1!G11~q2!G22~p1q22q1!. ~A1!

First, consider the region of the complexv plane in which
the Fokker-Planck eigenvalue density, calculated within
SCBA, is zero~all y for x.0 anduyu.yB for x,0). In that
region, for smallh, Gii (p)}h, S11(p)}h, S11

(2)(p)}h3,
and the ratio has the limiting valueS11

(2)(p)/S11(p)50 for
h→0. Second, consider the complementary region (x,0
and uyu,yB). In this region, we use the same approach
evaluating Eq.~A1! as was applied to Eqs.~26! and ~27! in
Sec. III. Substituting forGii (p) in terms ofC(p), replacing
C(p) with I (v)d(p22q0

2), where Dq0
21x50, and using

Eqs. ~21! and ~35! to obtainS i i (p) and I (v), we find, for
p5q0 in the limit h→0,

S11
(2)~p!5

~yB
22y2!3/2

Ḡq0
2

f , ~A2!

wheref is an angular average over directions ofq1 ,q2, rep-
resented by the unit vectorsn̂1 and n̂2:

f [^~ n̂1•n̂2!2d~@ n̂1n̂22n̂1#221!& n̂1n̂2
5O~1!. ~A3!

Thus, foruyu,yB , corrections to the SCBA have the relativ
size

S11
(2)~p!

uS11~p!u
5

yB
22y2

Ḡq0
2

f ;g~x!, ~A4!

and, as advertised, are small at weak disorder.

FIG. 5. Leading correction to the SCBA self-energy.
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APPENDIX B: STUDY OF THE DISCRETIZED PROBLEM

On a lattice, with site labelsa,b in arbitrary dimension,
the advection part of the Fokker-Planck operator,2“•V, is
represented by a matrix with elements

Aab52 1
2 uab ~B1!

for a,b nearest-neighbor sites. It satisfiesAab52Aba and
has diagonal elements

Aaa52
1

2 (
b

uab ~B2!

so that(aA(a,b)50, as required for conservation of pa
ticle density. Other elements are zero. We takeAab to be
Gaussian distributed with zero mean, and variance

^AabAab&5Gp2, ^AabAba&52Gp2, ~B3!

^AaaAab&5Gp2, ^AaaAba&52Gp2, ~B4!

^Aaa
2 &54Gp2, ^AaaAbb&52Gp2 ~B5!

for a,b nearest-neighbor sites. With the plane-wave ba
^rauk&5N21/2eik•ra, wherera is the position coordinate o
site a on a lattice with N sites in total, we need
^^quAuk&^kuATuq&&, which takes the value

^^quAuk&^kuATuq&&5
1

N2 (
r1r2r3r4

^Ar1r2
Ar3r4

&

3eiq•(r12r3)1 ik•(r42r2) ~B6!

5
4p2G

N
@~12cosqx!~11coskx!

1~12cosqy!~11cosky!#. ~B7!

Similarly,

^^quAuk&^kuAuq&&52
~2p!2G

N
@sin~kx!sin~qx!

1sin~ky!sin~qy!#. ~B8!

Repeating the style of calculation described in Sec. III,
find that the support of the eigenvalue density of the d
cretized Fokker-Planck operator has a boundary determ
by

~2p!2G

N (
qx ,qy

~11cosqx!~22cosqx2cosqy!

uv12D@22cosqx2cosqy#u2
51.

~B9!

In the continuum limit we recover the result

GE
0

L

d2q
q2

uv1Dq2u2
51, ~B10!

and hence Eq.~39!.
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